Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The LAProof library provides formal machine-checked proofs of the accuracy of basic linear algebra operations: inner product using conventional multiply and add, inner product using fused multiply-add, scaled matrix-vector and matrix-matrix multiplication, and scaled vector and matrix addition. These proofs can connect to concrete implementations of low-level basic linear algebra subprograms; as a proof of concept we present a machine-checked correctness proof of a C function implementing sparse matrix-vector multiplication using the compressed sparse row format. Our accuracy proofs are backward error bounds and mixed backward-forward error bounds that account for underflow, proved subject to no assumptions except a low-level formal model of IEEE-754 arithmetic. We treat low-order error terms concretely, not approximating as O(u^2).more » « less
-
Dubois, Catherine; Kerber, Manfred (Ed.)Solving a sparse linear system of the form Ax = b is a common engineering task, e.g., as a step in approximating solutions of differential equations. Inverting a large matrix A is often too expensive, and instead engineers rely on iterative methods, which progressively approximate the solution x of the linear system in several iterations, where each iteration is a much less expensive (sparse) matrix-vector multiplication. We present a formal proof in the Coq proof assistant of the correctness, accuracy and convergence of one prominent iterative method, the Jacobi iteration. The accuracy and convergence properties of Jacobi iteration are well-studied, but most past analyses were performed in real arithmetic; instead, we study those properties, and prove our results, in floatingpoint arithmetic. We then show that our results are properly reflected in a concrete implementation in the C language. Finally, we show that the iteration will not overflow, under assumptions that we make explicit. Notably, our proofs are faithful to the details of the implementation, including C program semantics and floating-point arithmetic.more » « less
-
Dubois, Catherine; Kerber, Manfred (Ed.)Solving a sparse linear system of the form Ax = b is a common engineering task, e.g., as a step in approximating solutions of differential equations. Inverting a large matrix A is often too expensive, and instead engineers rely on iterative methods, which progressively approximate the solution x of the linear system in several iterations, where each iteration is a much less expensive (sparse) matrix-vector multiplication. We present a formal proof in the Coq proof assistant of the correctness, accuracy and convergence of one prominent iterative method, the Jacobi iteration. The accuracy and convergence properties of Jacobi iteration are well-studied, but most past analyses were performed in real arithmetic; instead, we study those properties, and prove our results, in floatingpoint arithmetic. We then show that our results are properly reflected in a concrete implementation in the C language. Finally, we show that the iteration will not overflow, under assumptions that we make explicit. Notably, our proofs are faithful to the details of the implementation, including C program semantics and floating-point arithmetic.more » « less
An official website of the United States government

Full Text Available